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Abstract

The hydrodynamic and thermal boundary layer similarity flows driven past a semi-infinite impermeable flat plate by

a power-law shear with asymptotic velocity profile U1ðyÞ ¼ by�1=2 ðy ! 1; b > 0Þ is considered (y denotes the coor-
dinate normal to the plate). Assuming that the buoyancy and viscous dissipation effects may be neglected, the special

cases of an isothermal and of an adiabatic flat plate are examined both analytically and numerically.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The shear driven flows, like the wall-driven Couette-

flow, the wind-driven Ekman-flow, the Lock-type flows

near to the interface of two parallel streams etc. belong

to the classical topics of fluid mechanics. Due to their

wide technical and environmental applications, the

general research interest in the shear driven flows is still

present in our days. Recently, the adjustment of a zero

pressure gradient laminar flow near a flat impermeable

boundary to an exterior power-law velocity profile of the

form

U1ðyÞ ¼ bya ðy ! 1; b > 0Þ ð1Þ

has been investigated for a wide range of values of the

exponent a by Weidman et al. [1]. The aim of the present
paper is to examine the heat transfer characteristics of

the boundary layer flow past an impermeable semi-infi-

nite flat plate corresponding to the case a ¼ �1=2 by
assuming that the buoyancy and viscous dissipation ef-

fects are negligible. We shall assume that the plate

temperature TwðxÞ varies as a power c of the distance x
along the plate, and will present exact analytical solu-
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tions for the isothermal ðc ¼ 0Þ and the adiabatic

ðc ¼ �1=3Þ cases, respectively, for arbitrary values of
the Prandtl number. To our best knowledge this prob-

lem has not been considered before.
2. Basic equations

Assuming that the buoyancy and viscous dissipation

effects may be neglected, the laminar boundary layer

equations of a viscous and incompressible fluid

describing a zero pressure gradient flow and the corre-

sponding energy equation can be written in non-

dimensional form as
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where x and y are the non-dimensional Cartesian coor-
dinates measured along the plate and normal to it, re-

spectively, T is the non-dimensional temperature and w
is the non-dimensional stream function, which is defined

in the usual way as u ¼ ow=oy and v ¼ �ow=ox with u
and v being the non-dimensional velocity components
along x and y axes, respectively. Eqs. (2) and (3) are
ed.
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solved subject to the following impermeability, non-slip

and thermal boundary conditions

wðx;0Þ ¼ 0; ow
oy

ðx;0Þ ¼ 0 and
ow
oy

! bya ðy !1Þ

T ðx; yÞ ¼ TwðxÞ and T ! 0 ðy !1Þ
ð4Þ

Weidman et al. [1] have shown that by the similarity

transformation

wðx; yÞ ¼ xðaþ1Þ=ðaþ2Þ � f ðgÞ; g ¼ x�1=ðaþ2Þ � y ð5Þ

Eq. (2) reduces to the ordinary differential equation

ða þ 2Þf 000 þ ða þ 1Þff 00 � af 02 ¼ 0 ð6Þ

along with the boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ðgÞ ! bga as g ! 1 ð7Þ

where primes denote differentiation with respect to g. In
the exactly solvable cases a ¼ �1=2 and a ¼ �2=3, the
effect of a lateral suction and injection of the fluid has

been considered recently by Magyari et al. [2].

The aim of the present paper is to examine the heat

transfer characteristics of the boundary layer flow past

an impermeable semi-infinite flat plate corresponding to

the case a ¼ �1=2. In this case, we assume that the wall
temperature distribution has the form

TwðxÞ ¼ T1 þ T0xc ð8Þ

where T1 is the ambient temperature of the surrounding
fluid, and T0 > T1 and c are constants. Under this as-
sumption the energy equation (3) admits the similarity

solutions of the form

T ðx; yÞ ¼ T1 þ T0 � xc � #ðgÞ ð9Þ

where the dimensionless temperature # satisfies the or-
dinary differential equation

ða þ 2Þ#00 þ Pr � ½ða þ 1Þf#0 � cða þ 2Þf 0#� ¼ 0 ð10Þ

along with the boundary conditions

#ð0Þ ¼ 1; #ð1Þ ¼ 0 ð11Þ

where Pr is the Prandtl number. Thus, the solution (9)
corresponds to the wall temperature distribution (8).

However, we are concerned here mainly with the special

cases of an isothermal (c ¼ 0) and of an adiabatic
(#0ð0Þ � 0) plate, respectively.
Fig. 1. Dependence of the heat transfer coefficient (15) on the

Prandtl number Pr in the isothermal case (for b ¼ 1).
3. Solution and discussion

The solution of the flow problem (6) and (7) for

a ¼ �1=2 has been given for an impermeable plate by
Weidman et al. [1] and for a permeable plate by Magyari

et al. [2]. In the former case it reads:
f ðgÞ ¼ ð24b2Þ1=3
ffiffiffi
3

p
� Ai0ðzÞ þ Bi0ðzÞffiffiffi
3
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where AiðzÞ and BiðzÞ are the Airy functions (see e.g. [3])
and z ¼ ðb=3Þ2=3 � g.
Further, it is easy to show that in the case of an

isothermal flat plate (c ¼ 0), the solution of the energy
equation (10) can be given by quadratures as follows:

#ðgÞ � #isðgÞ ¼ 1�
R z
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Thus, the heat transfer coefficient h � �#0
isð0Þ is ob-

tained as

h ¼ b
3
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where
ffiffiffi
3

p
� Aið0Þ þ Bið0Þ ¼ 2 � 3�1=6=Cð2=3Þ (see [3]).

The dependence of h on the Prandtl number Pr is
plotted (for b ¼ 1) in Fig. 1 and in Fig. 2 a couple of
temperature profiles #isðgÞ corresponding to different
values of Pr are shown. As expected, the heat transfer
coefficient is always positive and increases with in-

creasing value of the Prandtl number.

Now, we turn our attention to the case of an adia-

batic plate, that is, #0ð0Þ � 0. Thus, integrating the en-
ergy equation (10) once and taking into account the

thermal boundary conditions (11) one obtains (for

a ¼ �1=2):

#0ð0Þ ¼ Pr �
Z 1

0

1

3
f#0

�
� cf 0#

�
dg ð16Þ

After a partial integration, the requirement #0ð0Þ � 0
leads to the equation



Fig. 2. Temperature profiles (14) plotted against g for different
Prandtl numbers in the isothermal case (for b ¼ 1).

Fig. 3. Temperature profiles (20) plotted against g for different
Prandtl numbers in the adiabatic case (for b ¼ 1).

Fig. 4. Excess temperature profiles (22) plotted against g for
different Prandtl numbers (for b ¼ 1).

E. Magyari et al. / International Journal of Heat and Mass Transfer 47 (2004) 31–34 33
lim
g!1

½f ðgÞ#ðgÞ� ¼ ð1þ 3cÞ �
Z 1

0

f 0#dg ð17Þ

where, according to the third equation (7), f ðgÞ !
2bg1=2 as g ! 1. Now, assuming that #ðgÞ goes to zero
as g ! 1 faster than g�1=2 (see also below), the left-

hand side of Eq. (17) vanishes and we thus conclude that

the adiabatic case is realized for the wall temperature

distribution of the form

TwðxÞ ¼ T1 þ T0 � x�1=3 ð18Þ

which corresponds to the temperature distribution in a

plume (see [4], p. 151). The corresponding dimensionless

temperature field is then immediately obtained as

#ðgÞ ¼ exp
�
� 1
3
Pr �

Z g

0

f ðtÞdt
�

ð19Þ

Having in mind Eq. (12), we further obtain the explicit

solution

#ðgÞ � #adðgÞ ¼
ffiffiffi
3

p
� Aið0Þ þ Bið0Þffiffiffi
3

p
� AiðzÞ þ BiðzÞ

" #2 Pr
ð20Þ

corresponding to the identically vanishing wall temper-

ature gradient #0
adð0Þ ¼ 0. Taking into account the as-

ymptotic behavior of the Airy functions (see [3]), we

easily obtain the asymptotic expression of the tempera-

ture field (20) in the form:

#ðgÞ ! 2ðb=3Þ1=3
ffiffiffi
p

p

Cð2=3Þ g1=4 exp

�"
� 2b
9

g3=2
�#2 Pr

as g ! 1 ð21Þ

Thus, the left-hand side of Eq. (17) actually vanishes as

assumed above.

As an illustration, a couple of temperature profiles (20)

corresponding to different values of the Prandtl number
Pr are shown in Fig. 3. It is seen that for the same value of
Pr, the temperature of the fluid over the adiabatic plate,
#adðgÞ, as expected, is for any 0 < g < 1 higher than

#isðgÞ over its isothermal counterpart. This circumstance
is explicitly seen in Fig. 4, where the excess temperature

D#ðgÞ � #adðgÞ � #isðgÞ ð22Þ

is shown for different values of Pr. It can be seen from
this figure that the maximum of D# increases with in-
creasing value of Pr and is shifted to smaller values of g.
4. Summary and conclusions

Heat transfer in the forced convection flow past an

impermeable flat plate in outer shear flow U1ðyÞ ¼
by�1=2 as y ! 1, b > 0 has been considered in the iso-
thermal and adiabatic case, respectively. The analytical

solutions obtained show that the peak of the excess

temperature #adiabaticðgÞ � #isothermðgÞ increases with the
increasing value of the Prandtl number Pr and, at the
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same time, it is shifted to smaller values of the similarity

variable g ¼ y=x2=3.
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